CSC-IBM International Joint Research Program (PhD, Post-doc, Junior Faculty)

Professor/Department/University	Project Title	Project Description	Technical/Knowledge Background	Qualifications
CI	limate Change, Agricultu	re and Digital Adaptations		
Art Degaetano, Earth and Atmospheric Sciences, Cornell University (http://www.eas.cornell.edu/people/profile.cfm?netid=atd2_eng)	(1) Spatial and Temporal Scales of Climate Data Required to Make Sound Agricultural Decisions	The project I have in mind would focus on the spatial and temporal scales of climate data required to make sound agricultural decisions. Often the perceptions of users is that the finer the spatial scale of climate data the more useful (or accurate) it is. Through this research I would hope to isolate the spatial resolution below which finer resolution information is indistinguishable from random noise. This will be shown based on the accuracy of the data themselves, as well as differences in the manage practices that would have been applied based on that data. An ultimate goal would be to assess the value of finer resolution data relative to the savings realized by the use of the data when applied to a management decision. This assessment could be conducted both on real time weather data and/or future climate projections.	Physical Science (not necessarily Atmospheric Science, but that would be preferred). At least some background computer programming and statistics.	Python/MatLab programming proficiency. Moderate-high ability in written and spoken English. Familiarity with field measurement technology (preferably weather stations).
Johannes Lehmann, School of Integrative Plant Sciences, Soil and Crop Sciences Section, Cornell University (https://scs.cals.cornell.edu/people/johannes-lehmann)	(2) Soil Carbon Stabilization for Promoting Food Security and Climate Change Mitigation	More carbon is stored in soil than in the biosphere and atmosphere combined, and small changes in soil carbon storage therefore has profound influences on atmospheric carbon dioxide and global warming. Yet, our prediction models for climate change contain mathematical models that are based on erroneous assumptions of the nature of soil organic matter. Similarly important is organic matter in securing soil health functions and food security. Through ultra-high resolution	The postdoc should either have technical background in modeling (either spatial modeling using GIS, spatial statistics, use of remote sensing information; or process modeling either life cycle assessments or systems dynamics models) or analyses using spectroscopy (NEXAFS, XPS, NMR, Raman, FTIR) and microscopy (SEM, TEM,	Knowledge about soil and earth system science is desirable.

		spectroscopy and isotope experiments,	NanoSIMS) and sample	
		basic mechanisms of carbon-mineral and	preparation (microtoming, FIB)	
		aggregation formation can be investigated		
		that will feed into next-generation		
		mathematical models. These models need		
		then be verified through wide geographic		
		analyses of regional and continental carbon		
		behavior. Special interest pertains to the		
		properties and behavior of fire-derived		
		pyrogenic carbon in its effects on soil		
		carbon dynamics and global carbon cycles.		
Peter Hess, Biological and Environmental Engineering, Cornell University	(3) Land-Atmosphere	The research addresses fundamental	Someone with quantitative	More specifically skill in
(https://bee.cals.cornell.edu/people/peter-hess)	Biogeochemical Nitrogen Cycling:	questions regarding the interaction	training in a physical science	computing is necessary.
	Climate and Air Pollution	between the biogeochemistry of the	(physics, atmospheric science)	Knowledge of large scale
		nitrogen cycle and the resulting impacts on	or mathematics. At any rate	computing, big data,
		climate and air-quality. It addresses how	knowledge of mathematics and	atmospheric science,
		the nitrogen cycle will change in the future	hopefully some statistics is	biogeochemistry, and Earth
		as the climate changes, emissions change	necessary. Also good	System modeling would be a
		and agricultural changes. The research	knowledge of English is	plus.
		involves simulating various aspects of the	important.	
		nitrogen cycle and agriculture within an		
		Earth System model.		
Harold van Es, School f Integrative Plant Science, Soil and Crop Sciences	(4) Climate Change, Soil Health	My program is working on important	In terms of the technical	I would be looking for
Section, Cornell University (<u>https://scs.cals.cornell.edu/people/harold-van-es</u>)	and Cropping Systems	aspects related to climate change,	background, I would be looking	someone who has strong
Section, cornen oniversity (<u>inteps.//scs.cais.cornen.edu/people/natoid-vaires</u>)	and cropping systems	agriculture, and digital solutions. We have	for a person who has a strong	background in statistics
		developed an assessment and management	background in soil science and	(including familiarity with R
		framework for soil health that allows	understands agricultural	software) and has some
		cropping systems to be more productive	systems. In addition, the person	programming skills.
		and resilient to climate change. We have	needs to have a quantitative	
		also developed computational technology	interest in terms of the	
		that allows for more efficient use of	application of digital	
		nitrogen fertilizer using weather, soil, and	technologies to soils and	
		crop management inputs, which allows for	agronomy.	
		greater production efficiencies as well as		
		reduced impacts of greenhouse gas		
		emissions and water contaminants.		
David Wolfe, School of Integrative Plant Science, Horticulture Section, Cornell	(5) Agricultural Soil and Water	I currently have research on-going that		- English proficiency
University (<u>https://hort.cals.cornell.edu/people/david-wolfe</u>)	Management for Changing	might succinctly be described as	\rightarrow	- Excel
	Climate	"Agricultural Soil and Water Management		- crop production,
			1	agreecelegy, recearch
		for Changing Climate". I have a postdoc		agroecology, research
		for Changing Climate". I have a postdoc working on NYS water resources-		experience (particularly
		working on NYS water resources-		experience (particularly

		area. I'm also working with The Nature Conservancy on various research concepts associated with "climate smart soils", soil carbon sequestration and soil health etc Another area is policy interests at international level- developing mechanisms for agriculture, forestry, other land uses (AFOLU) to be part of COP negotiations and address national and international mitigation goals. Planning a major side event for the next COP (in Bonn, Germany about a year from now).		sampling and analyses experience, particularly in relation to soil organic matter, soil carbon sequestration, and soil health Other qualifications of interest: - water management in crop production - role of agriculture, forestry, other land uses (AFOLU) in climate change mitigation and policy
Natalie Mahowald, Earth and Atmospheric Sciences, Cornell University (<u>http://www.eas.cornell.edu/people/profile.cfm?netId=nmm63</u>)	(6) Aerosol-Climate- Biogeochemistry Interactions	Recent studies have highlighted the role of natural and anthropogenic aerosols and their impacts on biogeochemistry, especially the carbon cycle and their resulting impact on climate. Indirect changes in aerosols can also result from land use, including changing emissions from wild fires, desert dust or forests as well as direct emissions from agriculture, which can impact climate and biogeochemistry. Our group focuses on addresses these poorly understood processes.	Requires atmospheric science, physics, chemistry or engineering background	Good computer skills
Toby Ault, Earth and Atmospheric Sciences, Cornell University (http://www.eas.cornell.edu/people/profile.cfm?netid=tra38_eng)	(7) Quantification of Megadrought Risk	Megadroughts are prolonged periods of aridity unlike anything seen during the historical period, and they have been linked to the demise of several preindustrial civilizations. Mounting evidence suggests that the risks of such events during climate change is increasing due to rising temperatures and dynamic circulation changes throughout many of the world's subtropical dry zones. This project will work towards quantifying global megadrought risk on near-term (decadal and multidecadal) time horizons using a combination of statistical techniques and new numerical model simulations. The postdoc will assist in both the data analysis and climate modeling aspects of this work.	In general, the postdoc should be comfortable working in a linux environment and should know at least one of the following (or related) interpreted languages: Matlab, Python, R, IDL, NCL, or equivalent. Proficiency in any of these languages is largely transferable, so knowing one (or a related one not listed here), would be sufficient. In terms of background: interest/experience with chaotic dynamical systems, multivariate statistics, or applied physics	Basic familiarity with Fortran would be a plus, but is not essential as this is an esoteric language still only widely used within the atmospheric sciences. Knowledge of C++ would likewise be advantageous for getting started, but isn't essential.

			would make for a strong post- doc.	
Ying Sun, School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University (<u>https://scs.cals.cornell.edu/people/ying-sun</u>)	(8) The Application of Chlorophyll Fluorescence for Crop Stress Monitoring and Yield Prediction	Chlorophyll Fluorescence (F) is a direct probe of photosynthesis and has the potential to be applied for crop stress monitoring and yield prediction. However, the quantitative relationship of F with plant physiology and crop yield likely differs among crop cultivars and varies with environmental conditions, and management practices. This project aims to develop a predictive understanding of F dynamics and use the understanding gained to guide practical applications of F measurements from different observational platforms in crop stress management and yield prediction.	The postdoc is expected to have general background in ecology-, agriculture-, computational- related fields.	Preference would be given if the postdoc have skills in machine learning technique or/and field measurement.
Michael Gore, School of Integrative Plant Science, Plant Breeding and Genetics Section, Cornell University (<u>https://plbrgen.cals.cornell.edu/people/michael-gore</u>)	(9) Deep-Learning for High- Throughput Plant Phenotyping	We will develop an unmanned aircraft system (UAS) platform to collect images over experimental crops, and aim to develop deep learning algorithms to identify plant pathologies and morphologies at an accuracy that is on par with human experts. The UAS will consult human experts in ambiguous cases and gradually learn to make decisions autonomously.	This postdoctoral associate position involves the phenotyping of foliar diseases in maize with several complementary ground- and aerial-based methods in the field. The postdoc will computationally process collected images along with geospatial information and apply deep learning algorithms for reliable identification of foliar diseases. The ideal candidate will have expertise in remote sensing, image processing, deep learning, and statistical genetics. Responsibilities will include research in the collection and processing of geospatial and image data, statistical dissection, prediction and validation of disease phenotypes, and training scientists and students. The position will involve close collaboration with a dynamic	A Ph.D. in remote sensing, statistics, computer programming or related discipline with at least 2 years of intensive training in statistical methods. Programming (R/Java/Python/Julia), image (ImageJ/Agisoft/Pix4D) analysis skills, development and/or application of deep learning algorithms, and working knowledge of remote sensing, geospatial, and statistical approaches. Excellent interpersonal and communication skills with a strong publication record in the field of remote sensing and statistical genetics.

Mark Sorrells, School of Integrative Plant Science, Plant Breeding and Genetics Section, Cornell University (<u>https://plbrgen.cals.cornell.edu/people/mark-sorrells</u>)	(10) Incorporating High Throughput Phenotypes and Environmental Covariates in Genomic Prediction Models to Accelerate Genetic Gain in response to Climate Change	This project would use correlated phenotypes from repeated aerial imaging of breeding research plots and environmental parameters as components of genomic prediction models to increase prediction accuracy. We have data sets and computing facilities to use in these analyses and can provide the expertise for training in the necessary methods. We have published more than a dozen peer- reviewed articles on genomic selection methods including one using environmental covariates that enables the prediction of performance in untested environments expected with climate change.	team of robotics engineers, computer scientists, statistical geneticists, and plant pathologists. The person should have deep knowledge of statistics and quantitative analysis. A good working knowledge of genetics and breeding would be desirable.	Ability to program in R and manage large datasets, aerial image analysis of plants.
Marc Fuchs, School of Integrative Plant Science, Plant Pathology and Plant- Microbe Biology Section, Cornell University (<u>https://pppmb.cals.cornell.edu/people/marc-fuchs</u>)	(11) Improving Our Understanding of Grapevine Red Blotch-Associated Virus	Among the recently described plant viruses is grapevine red blotch-associated virus, a monopartite single-stranded DNA virus. Little is known about the interaction of this virus with its natural host and treehopper vector. Using cutting-edge microbiological and molecular techniques, we will advance our knowledge of the virus interface with its host and vector.	I am anticipating the postdoc to have excellent knowledge of plant pathology and experience in molecular biology. More importantly, enthusiasm and dedication to excellence are expected.	
Christine Smart, School of Integrative Plant Science, Plant Pathology and Plant- Microbe Biology Section, Cornell University (https://pppmb.cals.cornell.edu/people/christine-smart)	(12) Understanding Genetic Diversity in Pathogens of Vegetable Crops	Plant diseases such as cucurbit downy mildew, Phytophthora blight, late blight of tomato and potato, and tomato leaf mold are having a major economic impact on vegetable production. My lab studies pathogen diversity to identify effectors that are present in unique pathogen populations, and also to track pathogens geographically. Be identifying the effector complement of each pathogen population, it is possible to determine the plant resistance genes that will be effective against each population, which will enhance disease control.	The postdoc should have a working knowledge of plant pathology (preferably a PhD in plant pathology or microbiology), understanding of plant biology and molecular biology.	Special qualification include ability/desire to work both in the field and in the lab. Some knowledge of bioinformatics.

Dan Buckley, School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University (<u>https://scs.cals.cornell.edu/people/daniel-buckley</u>)	(13) Metagenomic and Isotopic Techniques in Microbiome Identification	Soil microbiomes provide ecological services which underlie the sustainability of both agricultural and ecological systems, and yet the vast majority of soil microorganisms remain poorly characterized. We are using a suite of metagenomic and isotopic techniques to identify dominant members of soil microbiomes and to characterize their impacts on soil health, plant productivity, and on the terrestrial carbon cycle.	Candidates should be familiar with the analysis of high- throughput DNA sequencing data generated from microorganisms or microbial communities. They should have familiarity working with either amplicon sequence data, comparative genomic data, or metagenomic data. Successful applicants will have a background in microbial ecology, environmental microbiology or allied field and experience in bioinformatic analysis of DNA sequence data. Experience with R and Python, and experience working with computer scripts necessary for bioinformatics is required.	The post-doc should have a Ph.D. in Microbiology or an allied field with specific research experience that relates to either the genomics, ecology, physiology, or evolutionary biology of environmental microorganisms (i.e. non- pathogenic microbes).
Lailiang Cheng, School of Integrative Plant Science, Horticulture Section, Cornell University (<u>https://hort.cals.cornell.edu/people/lailiang-cheng</u>)	(14) Sugar Metabolism and Accumulation in Fleshy Fruits	The objective is to understand the molecular mechanisms that underlie sugar metabolism and accumulation in fleshy fruits such as apple, with particular emphasis on sugar transporters at the cell membrane and tonoplast, with the ultimate goal of manipulating sugar levels in these fruits for quality improvements. In addition to routine molecular approaches, functional characterization of sugar transporters via electrophysiology techniques such as patch clamp will be used.	Good skills in gene cloning and functional characterization in yeast, cell culture and whole plants, and experience in working with fruit crops are preferred.	A Ph.D in plant physiology, biochemistry, molecular biology, horticultural science or crop science is required.
Lailiang Cheng, School of Integrative Plant Science, Horticulture Section, Cornell University (<u>https://hort.cals.cornell.edu/people/lailiang-cheng</u>)	(15) Physiological and Molecular Mechanisms for Cellular Calcium Partitioning in Fleshy Fruits	The objective is to understand the physiological and molecular mechanisms that regulate calcium uptake into fleshy fruits such as apple and cellular calcium partitioning among subcellular compartments in relation to fruit quality, particularly calcium-related physiological disorders. This project will have the potential to significantly reduce Ca deficiency-related disorders and improve	Good skills in gene cloning and functional characterization in yeast, cell culture and whole plants, and experience in working with fruit crops are preferred.	A Ph.D in plant physiology, biochemistry, molecular biology, horticultural science or crop science is required.

		fruit quality. A variety of experimental	
		techniques including transcriptome	
		analysis, cellular calcium imaging, and	
		electrophysiology methods will be used.	
Todd Walter, Biological and Environmental Engineering, Cornell University	(16) Climate Change Impacts on	This past summer much of New York State	
https://bee.cals.cornell.edu/people/m-todd-walter	Agricultural Water Resources	experienced a severe drought, which	
	Management	resulted in considerable crop loss.	
		Ironically, in the previous year there was	
		too much rain early in the growing season	
		and many crops drowned and had to be	
		replanted. This project would consist of	
		three activities: (1) use the hydro-	
		meteorological record (e.g., rainfall, snow,	
		stream discharge, etc.) across New York	
		State (NYS) in combination with stochastic	
		and/or simulation models to determine the	
		historical frequency and spatial distribution	
		of droughts/floods that result in crop	
		failures; (2) apply stress tests to the	
		previous analysis to determine how	
		sensitive NYS's agricultural systems are to	
		changes in weather extreme magnitudes	
		and frequencies; and (3) test the capacity	
		of management decisions (e.g., adopt	
		irrigation, increase soil water holding	
		capacity with carbon amendments, etc.) to	
		potentially mitigate water-related crop	
		risks. This project would interface with	
		those being led by Drs. DeGaetano, Ault,	
		van Es, and Ault.	
Todd Walter, Biological and Environmental Engineering, Cornell University	(17) Climate Change Impacts on	My research group and colleagues at	
https://bee.cals.cornell.edu/people/m-todd-walter	Water Quality in Agricultural	Cornell have been working on strategies for	
	Watersheds	mitigating nonpoint source pollution from	
	Watersneus	agricultural runoff based on watershed	
		hydrology. We have developed a	
		prototype model and web interface that	
		predicts runoff-generating locations	
		throughout a watershed; currently we have	
		set up this model for the Owasco Lake	
		watershed in central New York. This	
		project would expand the scope of the	
		model statewide and apply the historical	
		weather records in order to identify the	
		frequency, duration, and seasonality of	

			1
		storm runoff generation from rural lands	
		statewide and then apply a suite of	
		potential future climates to assess how	
		these patterns are likely to change. One	
		tangible output from this project will be a	
		user-friendly, web-based mapping interface	
		that stakeholders can use to determine	
		runoff risks at daily-to-annual scales,	
		including forecasted risks.	
Todd Walter, Biological and Environmental Engineering, Cornell University	(18) Climate-Change Impacts on	This project will be part of our on-going	
https://bee.cals.cornell.edu/people/m-todd-walter	Flood Risk	efforts to assess flood hazards and risks	
		across New York State (NYS). One of the	
		challenges in making large-scale	
		assessments like this is a lack of data; both	
		data required to runoff watershed models	
		and data to assess our confidence in the	
		models. We have proposed an approach	
		that allows us to stochastically describe the	
		flood generating weather features (e.g.,	
		storm intensity, duration, snowmelt, etc.)	
		and utilize the existing stream discharge	
		record to assess our models' ability to	
		-	
		predict "flood risks;" in other words, we are	
		not concerned about predicting a particular	
		discharge on a particular day but only	
		whether or not there is a flood or no flood	
		on any given day. By reducing our	
		dependence on simulation models in this	
		way, we can assess our overall confidence	
		in our flood risk predictions, which may	
		suffer due to any number of factors, e.g.,	
		length of records, uncertainty in model	
		parameters, etc. We can also incorporate	
		"soft data" like human observations or	
		recollections of floods to reduce our	
		prediction uncertainty. The researcher	
		working on this project will apply this	
		approach across the state to estimate both	
		flood risks and patterns of uncertainty in	
		our risk estimates. The latter will be	
		especially useful in locating areas where	
		additional monitoring or other	
		environmental data are critically needed to	
		improve our confidence in flood risk	

		predictions.		
Larry Smart, School of Integrative Plant Science, Horticulture Section, Cornell University <u>https://hort.cals.cornell.edu/people/lawrence-smart</u>	(19) Genetic Basis for Hybrid Vigor in Shrub Willow Bioenergy Crops	Little is known about the genetic basis for hybrid vigor, even though it occurs in many crops - even in shrub willow. We have developed a diverse set of segregating trait mapping populations that can be used to correlate phenotypic variation in key traits with genotypic polymorphisms. Identification and characterization of the QTL and genes involved in important biomass yield traits will lead to the development of tools for early selection of genetically improved cultivars and improved knowledge of the underlying genetic factors controlling complex traits.	They should have a strong background in plant molecular biology, plant genetics, genomics, and bioinformatics. This should include gene cloning, nucleic acid isolation from plants, gene expression analysis, analysis of RNA-Seq and genomic sequencing data.	In addition to the background knowledge above, they should be qualified to execute statistical analysis, especially of genomic data in R.
	Food	·		
Sam Nugen, Food Science, Cornell University (https://foodscience.cals.cornell.edu/people/sam-r-nugen)	(20) Genetic Engineering of Bacteriophages for the Rapid Detection of E. coli	Genetic engineering of bacteriophages for the rapid detection of E. coli: Bacteriophage tail fibers can be genetically engineered to tailor a bacterial host range. The phage can then be used to separate, concentrate, and detect bacteria from a complex matrix. The assay can be designed to low-cost and deliver rapid results.	 The candidate should have good basic microbiological skills and some experience in cloning and molecular biology. Additionally, the ideal candidate will have: Excellent written and communication skills Ability to conduct independent research Ability to lead a team consisting of graduate and undergraduate students 	Candidates with a Ph.D. in microbiology, food safety, molecular genetics, or similar fields are strongly encouraged to apply.
Sam Alcaine, Food Science, Cornell University (https://foodscience.cals.cornell.edu/people/sam-alcaine)	(21) Enabling Realtime Detection of Adulterants in Fermented Dairy Products Using Metagenomic Analysis	Description: Changes in milk quality and adulterants (residual antibiotics, melamine, etc) will impact how bacterial populations perform during fermentation. By analyzing the metagenomic expression patterns of bacterial cultures during yogurt fermentation in the presence and absence of adulterants, we could identify early warnings genes that could help us flag these food safety and quality issues early.	The candidate should have good basic microbiological skills and some experience in cloning, transcriptome analysis, and general molecular biology techniques. Experience in dairy fermentations and working with lactic acid bacteria and/or bacteriophage is preferred, but not required	 Excellent written and communication skills The ability to conduct independent research The ability to lead a team consisting of graduate (MS, PhD) and undergraduate students
Sam Alcaine, Food Science, Cornell University (https://foodscience.cals.cornell.edu/people/sam-alcaine)	(22) Metagenomic Illumination of Protective Cultures	Protective bacterial cultures are increasingly being used in dairy and other	The candidate should have good basic microbiological skills and	Excellent written and communication skills

		food applications as alternatives to chemical preservatives to inhibit the growth of pathogens and spoilage organisms. Little is known about the mechanisms of this inhibition. This project would leverage metagenomic analysis to identify potential genes necessary for inhibition by comparing closely related lactic acid bacteria strains that are and are not inhibitory of eukaryotic spoilage organisms.	some experience in cloning, transcriptome analysis, and general molecular biology techniques. Experience in dairy fermentations and working with lactic acid bacteria and/or bacteriophage is preferred, but not required	 The ability to conduct independent research The ability to lead a team consisting of graduate (MS, PhD) and undergraduate student
Sam Alcaine, Food Science, Cornell University (<u>https://foodscience.cals.cornell.edu/people/sam-alcaine</u>)	(23) Visualization of Bacterial Contamination Patterns in Food	We know that pathogenic bacteria regularly contaminate food, but know little about the routes (surface, internalization, etc). This project will involve engineering bacteriophage to express visual reporters that can be seen, as a color bloom, on the surface or within a food (model food will be cheese) if the pathogen of interest is present. This will potentially allow investigators to identify routes of contamination in food processing plants and improve food safety.	The candidate should have good basic microbiological skills and some experience in cloning, transcriptome analysis, and general molecular biology techniques. Experience in dairy fermentations and working with lactic acid bacteria and/or bacteriophage is preferred, but not required	 Excellent written and communication skills The ability to conduct independent research The ability to lead a team consisting of graduate (MS, PhD) and undergraduate students
Martin Wiedmann, Food Science, Cornell University (https://foodscience.cals.cornell.edu/people/martin-wiedmann)	(24) Development and Implementation of Food Safety Genomics Tools	This project will involve the development or implementation of bioinformatics and/or genomics tools that can be used to improve food safety and reduce microbial food spoilage. For example, scholars may (i) develop and implement new approaches that can be used to determine genetic signatures that can be used to predict the source of a foodborne contaminant; (ii) develop approaches that can be used to identify abnormalities in raw materials based on metagenomic signatures; or (iii) perform whole genome sequencing (WGS) and analyze WGS data to characterize pathogen or spoilage organism transmission in food processing plants.	Expertise in bioinformatics, molecular biology, genome analyses, GIS data analyses or related fields.	Good written and oral English communication skills, including expertise in publishing peer-review papers in English journals, are also required.
	Wind I	Energy		
Sara Pryor, Earth and Atmospheric Sciences, Cornell University (<u>http://www.eas.cornell.edu/people/profile.cfm?netid=sp2279_eng</u>)	(25) Improved Understanding of, and Simulation of, the Causes of Intra-Annual to Inter-Annual	The feasibility of wind energy installations at given locations are dictated in large part by the wind resource ('power in the wind').	Experience with numerical modeling and high-performance computing (i.e. Running models	PhD in Atmospheric Science and/or Mechanical Engineering. Strong analytical

Lindsay Anderson, Biological and Environmental Engineering, Cornell University (<u>https://bee.cals.cornell.edu/people/catherine-anderson</u>)	Variability in Wind Resources and Operating Conditions (26) Hybrid Statistical Optimization Methods for Stochastic Resources in Power Systems	Variability of, and uncertainty in, that resource increase project risk (and uncertainty in electrical power production). We seek to improve prediction of the wind farm lifetime resource and operating conditions by developing and optimizing efficient numerical (computational) tools. Incorporating data analytic approaches with stochastic optimization, to accelerate operational decisions on large power networks with significant renewable resources.	such as WRF on high performance computing platforms, cloud or conventional). It would be desirable to have also experience with model performance methods and of course wind energy resource assessments. Technical background should include some experience in formulating and solving optimization problems. Solutions are computational, so	skills and if an Mech Eng graduate at least one course in atmospheric boundary layers (or similar). No specific qualifications, other that a PhD in a quantitative field – could be math, engineering, operations research, statistics. Some
Lindsay Anderson, Biological and Environmental Engineering, Cornell University (<u>https://bee.cals.cornell.edu/people/catherine-anderson</u>)	(27) Bi-level Optimization Under Uncertainty to Incorporate Utility Scale Renewables with Demand Side Flexility and Distributed	This project will investigate bi-level optimization algorithms to model interactions between transmission and distribution level components to develop	some scientific computational, so some scientific computing background is important. IN my lab we work with Matlab, Python and (occasionally) GAMS Technical background should include some experience in formulating and solving optimization problems.	background in energy applications is helpful, but mathematically strong researchers can generally pick that up fairly quickly. No specific qualifications, other that a PhD in a quantitative field – could be math, engineering, operations
	Resources	synergistic operational strategies.	Solutions are computational, so some scientific computing background is important. IN my lab we work with Matlab, Python and (occasionally) GAMS	research, statistics. Some background in energy applications is helpful, but mathematically strong researchers can generally pick that up fairly quickly.
	Health		I	
Philip S.Li, Center for Male Reproductive Medicine & Microsurgery, Cornell University (<u>http://urology.weillcornell.org/philip-s-li</u>)	(28) Male Infertility Microsurgical Big Data Research for Male Reproductive Medicine and Microsurgery	The project focuses on Male Infertility Microsurgical Data Research for Male Reproductive Medicine and Microsurgery. Microsurgical data analytics training is essential for clinical audiologists specializing in male infertility. Success in clinical microsurgery depends on practice in the laboratory and data analytics with technology. Microsurgery for male infertility is among the most technically and mentally challenging of microsurgical procedures, which generates big amount of unstructured and structured data for	Domain knowledge in Male Reproductive Medicine and Microsurgery; proficiency in SPSS, SAS, or R. Strong skills in data cleaning, data mining, data analysis and MIM HPC tools.	Clinical / Resident doctor with Master degree, PhD candidate, Post-doc.

	1			
		advanced research and clinical usage. Most		
		male infertility micro-procedures are		
		performed under 10 to 25 power		
		magnification and required all image to be		
		stored and processed in high performance		
		computing. In contrast to conventional post		
		surgery evaluation, tones of surgical		
		procedures are as dependent on technical		
		perfection and technology application.		
		Coordination, dexterity and steadiness of		
		the microsurgery can only be developed		
		with extensive practice in the laboratory		
		with strong technical skills, especially with		
		data mining and analytics background.		
	Open Power	Technology		
Liang Huang, EECS, Oregon State University	(29) Natural language processing,	Project Background: Simultaneous speech-	required: Strong in algorithms	PhD Candidate; Post-doc
(http://web.engr.oregonstate.edu/~huanlian/)	computational biology, machine	to-speech translation is just like real-time	design and analysis, esp.	
	learning	interpreters: you have to start translation	dynamic programming Strong	
		before the source sentence ends, and	coding experience (Python,	
		gradually translates as more input is	C/C++, Java). Experience in	
		available. Example usage: United Nations.	deep learning toolkits (Theano,	
		Project Goals: Build the first simultaneous	Torch, Tensorflow, etc.)	
		speech-to-speech translation framework	Experience in machine	
		and software using deep learning and	translation. recommend:	
		reinforcement learning. Publish 2 top	Experience in machine learning	
		conference papers.	(esp. reinforcement learning)	
Stephen Ramsey, Department of Biomedical Sciences, Oregon State University	(30) Computational biology;	Project Background: Worldwide DNA	CS background with emphasis	PhD Candidate; Post-doc
(http://eecs.oregonstate.edu/people/Ramsey-Stephen)	machine learning in	sequencing capacity is almost an exabase	on machine-learning and big	
	biology/biomedicine	pair (1018 bp) per year, and growing	data. Interest in biology or	
	biology biomedicine	exponentially. Human population genetics	genetics. Some background in	
		datasets are being generated on a massive	biology preferred. Skill Set:	
		scale (multiple "Million Human Genomes"	python/numpy/scipy/scikit-	
		sequencing projects are underway	learn; SQL; DB2; bash; Linux	
		worldwide) that will enable mapping the	shell tools; experience with	
		molecular basis of complex traits and	cloud computing &	
		human diseases with unprecedented	virtualization. Also a plus:	
		precision. At present, a lack of scalable	Theano or similar deep learning	
		computational methods-and an integrated	framework (e.g., Tensorflow)	
		cloud-based system making such methods		
		available to researchers-to mine and		
		extract knowledge from discoveries of trait		
		associations within "noncoding" regions of		

	1	1		
		generation. Our lab's expertise is in		
		developing machine learning methods to		
		identify and functionally characterize		
		human genetic variants using large-scale		
		datasets from human population genetic		
		studies. Project Goals: We propose to		
		develop and deploy an IBM DB2 Cloud-		
		based system that would accelerate and		
		advance human population genetics		
		studies. More specifically the system would		
		enable life scientists to search for, rank,		
		and view evidence for candidate causal		
		genetic variants within regions of the		
		genome that have been implicated in		
		genetic association studies for traits of		
		interest (for example, risk of heart attack or		
		stroke). The system would incorporate		
		advances in machine learning-that have		
		originated in our lab-for discriminating		
		functional from nonfunctional genetic		
		variants. The Y-100 scholar would work		
		with our team of three researchers (the PI		
		and three computer science graduate		
		students from China), and would		
		specifically work on enabling the system		
		that we are building to leverage IBM DB2 to		
		enable efficient querying of large-scale		
		population genetics datasets (10-100 billion		
		rows). Industry: Public Health		
		(Computational biology; genomics;		
		machine learning; population genetics;		
		cloud computing)		
Brett Tyler; Chris Sullivan, Center for Genome Research and Biocomputing,	(31) Genome sequence	Project Background: The skyrocketing	Knowledge of CUDA and GPU	PhD candidate, Post-doc,
Oregon State University (<u>http://bpp.oregonstate.edu/tyler</u>)	alignment and assembly is a	amounts of genomic data generated by	technologies. Skill Set: Ability to	Junior professor
	major bottleneck. New advances	modern DNA sequence technologies are	work on a Linux based operating	
	in hardware architecture allow	creating major data processing bottlenecks.	system, IBM Power8 processors,	
	for changes in how data can be	The most important processing tools use	IBM CAPI, IBM 822LC Server,	
	processed. This project will re-	sequence alignment and assembly, for	NVIDIA NVLink P100 Pascal	
	write genome assembly	example to assemble full genomes.	using.	
	algorithms to run on the IBM	Currently, these tools use many cores,	-	
	Power8 with NVIDIA NVLink	require much memory and take weeks to		
	GPUs using the CAPI	run. This project will use IBM POWER8		
	interconnect.	technology with GPUs to attack this		
		bottleneck. The CGRB has purchased a new		
		bottlenetk. The COND has purchased a new		

	IBM S822LC server with two 10-core			
	Power8 processors, two NVLink P100			
	Pascal GPUs and 1TB of local RAM. The			
	CGRB plans to use the new hardware with			
	the CAPI interface to connect the GPU and			
	in order to change the way genome			
	sequence data can be processed. The CGRB			
	has spent the last year working with the			
	IBM to compile and help port scientific			
	software to the Power8 processors with			
	NVIDIA K80 GPUs			
	(https://www.ibm.com/blogs/systems/ibm-			
	power8-and-osu-advance-genomics-			
	research- through-porting/). These older			
	systems with card based GPUs work great			
	for data on the CPU and simulations on the			
	GPU. The new machine with GPUs using			
	the CAPI interface will accelerate the way			
	data can be processed on the GPU. Project			
	Goals: The main goal of this project is to			
	port a tool that uses De Bruijn graph theory			
	to assemble genomes to the IBM Power8			
	with CAPI NVLink GPU processing using			
	CUDA. The final genome assembly tool will			
	take advantage of the multiple cores within			
	the GPU to dramatically decrease			
	processing time. To take full advantage of			
	the CUDA Cores in the GPU the tool will			
	move data through the CAPI interface to			
	interact with system memory to reduce			
	needed GPU memory footprint. Finally we			
	will use of the Power8 cores to manage the			
	data moving onto and off of the GPU to			
	ensure throughput. Industry: Genome			
	assembly tools are used throughout			
	biomedical research and increasingly for			
	genome-informed personalized health care.			
	The industry aims to go from patient			
	sample to assembled genome sequence			
	within 24 hours. This can only be achieved			
	by adapting assembly tools onto new			
	hardware technologies.			
Analytics and Visualization				

Chen Li , School of Information and Computer Science, University of California-Irvine (http://www.ics.uci.edu/faculty/profiles/view_faculty.php?ucinetid=chenli) Mike Carey, School of Information and Computer Science, University of California-Irvine (http://www.ics.uci.edu/faculty/profiles/view_faculty.php?ucinetid=mjcarey) [1] http://cloudberry.ics.uci.edu [2] http://cloudberry.ics.uci.edu/demos/twittermap/	(32) Cloudberry: Interactive Analytics and Visualization of Large-Scale Fast Data	We are developing a new, general-purpose open source system called "Cloudberry" [1] to support interactive data analytics and data visualization over large amounts of fast data. The Cloudberry system aims to provide several unique and important capabilities: Scalability, Interactivity, Visualization, Currency. A system on 500 million tweets with live data being ingested	Expertise in data management, hands-on programming skills	Post-doc; Junior Professor
		is available at [2]. We will study various open challenges in this exciting research direction, including: (1) A domain- independent middleware layer to translate frontend Restful requests to queries to the backend AsterixDB; (2) Cache module and replacement policies at the middleware; (3) Intelligent query slicing to reduce initial		
		query responsive time and return results progressively; (4) Making the middleware distributed across multiple machines; (5) Improving the AsterixDB LSM storage and indexing to reduce computational cost per query; and (6) Supporting continuous queries to reduce costs of compilation and deployment.		
Sharad Mehrotra, School of Information and Computer Science, University of California-Irvine (http://www.ics.uci.edu/faculty/profiles/view_faculty.php?ucinetid=smehrotr)	(33) Innovation in Data Cleaning	The key insight on which this proposal is based is that big data analytics in streaming, real-time, and interactive settings requires a paradigm shift in how data cleaning is performed Proposed research will explore 2 new innovations to help advance data cleaning for Big Data analysis. The first explores a progressive approach to ER to support progressive analysis. The proposed research will explore an approach wherein progressiveness is pervasive spanning all the phases of cleaning specially in scenarios when cleaning is based on complex logic possibly requiring dynamic acquisition of additional contextual information. The second is the analysis-aware cleaning that	Expertise in data management	Post-doc; Junior Professor
		is developed for structured queries (e.g., Hive and SQL) for both one-time and		

	continuous query scenarios that are issued	
	on top of static and streaming data. The	
	project will exploit a concrete context to	
	guide the research exploration – viz., line	
	analysis of social media data.	